605 | 4 | 41 |
下载次数 | 被引频次 | 阅读次数 |
目前,新品卷烟投放预测存在数据区间较短、数据波动较大等问题,制约了传统基于时间序列的卷烟投放模型在新品卷烟上的应用。为解决这一问题,创新性地将合成控制法与机器学习模型结合,采用稳定的成熟卷烟产品销量趋势对新品卷烟的销量趋势进行模拟和校准。以广西玉林市18个月卷烟销售数据为研究样本,将真龙(海韵中支)作为研究对象,基于随机森林算法对数据中缺失值进行相应处理后,通过合成控制法计算成熟卷烟产品对新品卷烟的拟合权重。应用效果检验发现,基于长短期记忆模型(LSTM)对新品卷烟预测的准确率仅为33.31%,在加入模型标签体系的多种机器学习模型后,集成学习模型(Weighted Ensemble)算法准确率可达到88.56%。最终,在将合成控制法和多种机器学习模型融合后,算法准确率达到了94.17%。该算法解决了当前新品卷烟销量预测局限性问题,并填补了新品卷烟投放模型的研究空白。
Abstract:At present, new product cigarette launch forecasts are hindered by short data intervals and significant fluctuations, limiting the use of traditional time-series models for new varieties. This paper innovatively combines the synthetic control method with machine learning to simulate and calibrate new cigarette varieties' sales trends using data from mature products. This paper takes 18 months of cigarette sales microdata in Yulin City, Guangxi as the research sample, and takes the new product Zhenlong(Haiyun Medium) as the research object. After processing the missing values in the data accordingly based on the random forest algorithm, the fitted weights of mature product cigarettes to new product cigarettes were calculated by the synthetic control method. The application effect test revealed that the LSTM model's prediction accuracy for new varieties was only 33.31%. In contrast, the Weighted Ensemble algorithm, enhanced with multiple machine learning models, achieved an accuracy of 88.56%. By fusing the synthetic control method with multiple machine learning models, we achieved an algorithm accuracy of 94.17%. This research overcomes limitations in predicting new variety cigarette sales and bridges the gap in new product launch models.
[1]付秋璇.浅析广西烟草行业数字化转型的主要问题与解决方法[J].中国管理信息化,2022,25(20):134-137.FU Qiuxuan. Analysis of the main problems and solutions in the digital transformation of the tobacco industry in province A[J].China Management Informationization, 2022,25(20):134-137.
[2]邓超,刘颂,王露笛,等.基于深度神经网络的卷烟智能投放模型构建方法[J].烟草科技,2021,54(02):78-83.DENG Chao, LIU Song, WANG Ludi, et al. A method for building an intelligent cigarette delivery model based on a deep neural network[J]. Tobacco Science and Technology, 2021,54(02):78-83.
[3]武牧,林慧苹,李素科,等.一种基于支持向量机的卷烟销量预测方法[J].烟草科技,2016,49(02):87-91.WU Mu, LIN Huiping, LI Suke, et al. A cigarette sales prediction method based on support vector machine[J]. Tobacco Science and Technology,2016,49(02):87-91.
[4]韩伟民,杨应广.卷烟创新产品工商交易预测研究[J].中国烟草学报,2022,28(01):115-122.HAN Weimin, YANG Yingguang. Research on forecasting industrial and commercial transactions of cigarette innovative products[J]. China Tobacco Journal,2022,28(01):115-122.
[5]吴明山,王冰,起亚宁,等.卷烟销量组合预测模型研究[J].中国烟草学报,2019,25(03):84-91.WU Mingshan, WANG Bing, QI Yaning, et al. Research on cigarette sales volume combination prediction model[J]. Acta Tabacaria Sinica,2019,25(03):84-91.
[6] Abadie A, Gardeazabal J. The economic costs of conflict:A case study of the Basque Country[J]. American economic review, 2003,93(1):113-132.
[7] Abadie A, Diamond A, Hainmueller J. Synthetic control methods for comparative case studies:Estimating the effect of California’s tobacco control program[J]. Journal of the American statistical Association, 2010, 105(490):493-505.
[8]连玉君,李鑫.合成控制法中的安慰剂检验改进研究——基于准标准化转换的统计推断[J].统计研究,2022, 39(8):14.LIAN Yujun, LI Xin. Improvement of Placebo Test in Synthetic Control Method—Statistical Inference Based on Quasistandardized Transformation[J]. Statistical Research, 2022,39(8):14.
[9] Abrell J, Kosch M, Rausch S. How effective is carbon pricing?—A machine learning approach to policy evaluation[J]. Journal of Environmental Economics and Management, 2022, 112:102589-.
[10] GUO J, ZHANG Z. Does renaming promote economic development? New evidence from a city-renaming reform experiment in China[J]. China Economic Review, 2019, 57.
[11] Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost:unbiased boosting with categorical features[J]. Advances in neural information processing systems, 2018, 31.
[12] Liaw A, Wiener M. Classification and Regression by Random Forest[J]. R News, 2002, 23(23).
[13] Ke G, Meng Q, Finley T, et al. Lightgbm:A highly efficient gradient boosting decision tree[J]. Advances in neural information processing systems, 2017, 30.
[14] Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural networks, 2005, 18(5-6):602-610.
[15] Gers F A, Schmidhuber J, Cummins F. Learning to forget:Continual prediction with LSTM[J]. Neural computation, 2000,12(10):2451-2471.
基本信息:
DOI:10.16472/j.chinatobacco.2023.024
中图分类号:TP181;F426.8
引用信息:
[1]莫玉华,谭茜,古越等.基于合成控制法与机器学习的新品卷烟投放策略研究[J].中国烟草学报,2024,30(05):92-98.DOI:10.16472/j.chinatobacco.2023.024.
基金信息:
广西中烟工业有限责任公司项目“数据挖掘对真龙新品在广西市场培育的应用研究”(GXZYCX2021E019)