233 | 0 | 16 |
下载次数 | 被引频次 | 阅读次数 |
【目的】探究TOF激光雷达扫描烟丝堆积体积在线测量应用前景。【方法】采用自主搭建的传送带烟丝堆积体积在线测量系统,研究了TOF激光雷达扫描高度、传送带颜色和运行速度对系统的影响,并对算法处理后的烟丝点云进行2.5D体积计算。【结果】(1)激光雷达扫描测量高度对检测点云异常值比例有较大影响,1200 mm高度扫描的点云数据比较适用于传送带烟丝堆积体积测量;传送带颜色为白色时,TOF激光雷达对传送带距离的测定误差最小;传送带运行速度40~130 mm/s范围内,点云数据量对物料扫描轮廓重建影响均较小;(2)激光雷达扫描测量高度变化过程中会出现“断层”现象,体积计算时选用interpolate模式对空缺值进行插值处理可补全断层位置,有效提高测量结果准确性。(3)基于TOF激光雷达扫描测量传送带物料堆积体积平均相对误差小于3.0%,较好地验证了该在线测量系统具有较高的测量准确度。【结论】采用TOF激光雷达扫描进行烟丝堆积体积在线测量具有良好可行性和准确性。
Abstract:[Objective] This study aims to explore the application prospects of online measurement of cut tobacco stacking volume using TOF Li DAR scanning. [Methods] An online measurement system for cut tobacco stacking volume on a conveyor belt was independently developed. The study investigated the effects of TOF Li DAR scanning height, conveyor belt color, and operating speed on the system. Additionally, a 2.5D volume calculation was performed on the cut tobacco point cloud processed by the algorithm. [Results] The results showed; 1) The measurement height of the Li DAR significantly affects the proportion of outliers in the detected point cloud. Point cloud data scanned at a height of 1200 mm are more suitable for measuring the stacking volume of cut tobacco on the conveyor belt. When the conveyor belt color is white, the measurement error of the TOF Li DAR distance to the conveyor belt is minimized. Within the conveyor belt operating speed range of 40~130 mm/s, the amount of point cloud data has little impact on the reconstruction of the material scanning contour. 2) During the variation of Li DAR scanning measurement height, “gaps” may occur. Using the interpolate mode to perform interpolation on missing values during volume calculation can fill the gaps, effectively improving the accuracy of the measurement results. 3) The average relative error of the accumulation volume measurement of conveyor belt materials based on TOF Li DAR scanning is less than 3.0%, which well verifies that the online measurement system has high measurement accuracy. [Conclusion] Using TOF Li DAR scanning for online measurement of cut tobacco stacking volume is highly feasible and accurate.
[1]李斌,鲁端峰,黄锋,等.一种基于光场成像的输送带上烟丝物料流量检测方法及系统[P].中国:ZL201910906730.0,2023-03-31.LI Bin,LU Duanfeng,HUANG Feng,et al.The invention relates to a detection method and system for tobacco material flow on conveyor belt based on optical field imaging[P].China:ZL201910906730.0,2023-03-31.
[2]袁月.基于激光传感技术的烟丝堆积体积测量系统开发[D].昆明.昆明理工大学,2021.YUAN Yue.Development of a measuring system for the volume of cut tobacco based on laser sensing technology[D].Kunming.Kunming University of Science and Technology,2021.
[3]乔俊峰.基于三维激光的传送带烟丝堆积体积在线测量研究[D].昆明.云南师范大学,2022.QIAO Junfeng.On-line measurement of cut tobacco stacking volume on conveyor belt based on 3D laser[D].Kunming.Yunnan Normal University,2022.
[4]李斌,鲁端峰,黄锋,等.一种输送带上烟丝物料堆积密度的在线检测方法[P].中国:ZL201910906687.8,2021-10-22.LI Bin,LU Duanfeng,HUANG Feng,et al.The invention relates to an on-line detection method for packing density of tobacco material on conveyor belt[P].China:ZL201910906687.8,2021-10-22.
[5]王乐,赵美丽,李华杰,等.基于激光扫描堆积表面重构的烟丝布料调控技术及应用[J].烟草科技,2022,55(12):88-94.WANG Le,ZHAO Meili,LI Huajie,et al.Application of bulk profile reconstruction technology into control of cut tobacco spreading based on laser scanning[J].Tobacco Science&Technology,2022,55(12):88-94.
[6]姜鑫,尹文庆,浦浩,等.基于结构光三维视觉的螺旋输送器谷粒体积的测量方法[J].南京农业大学学报,2019,42(2):373-381.JIANG Xin,YIN Wenqing,PU Hao,et al.Measurement method of grain volume on screw conveyor based on structured light of 3Dvision[J].Journal of Nanjing Agricultural University,2019,42(2):373-381.
[7]崔峥,王增才,张杰,等.基于三维点云分割的煤堆体积计算方法研究[J].中国矿业,2022,31(4):96-101.CUI Zheng,WANG Zengcai,ZHANG Jie,et al.Research on the calculation method of coal pile volume based on 3D point cloud segmentation[J].China Mining Magazine,2022,31(4):96-101.
[8]郝喜良,卢俊,刘英杰,等.一种在线测定烟丝填充值的方法[P].中国:ZL201210000176.8,2013-12-25.HAO Xiliang,LU Jun,LIU Yingjie,et al.The invention relates to a method for on-line determination of tobacco filling value[P].China:ZL201210000176.8,2013-12-25.
[9]杨梅洁,刘俊.距离因素对地面激光扫描精度影响分析[J].激光与光电子学进展,2020,57(12):122804.YANG Mei,LIU Jun.Influence of distance factor on the scanning accuracy of terrestrial laser[J].Laser&Optoelectronics Progress,2020,57(12):122804.
[10]蔡越,徐文兵,梁丹,等.不同因素对地面三维激光扫描点云精度的影响[J].激光与光电子学进展,2017,54(9):092801.CAI Yue,XU Wenbing,LIANG Dan,et al.Impacts of different factors on accuracy of point cloud obtained from terrestrial three-dimensional laser scanning[J].Laser&Optoelectronics Progress,2017,54(9):092801.
[11]徐文兵,程效军.植物表面特征对三维激光点云的影响[J].激光与光电子学进展,2020,57(24):242802.XU Wenbing,CHENG Xiaojun.Impact of plant surface features on3D laser point cloud[J].Laser&Optoelectronics Progress,2020,57(24):242802.
[12]周毅姝,张金凝,曹瑾瑾,等.基于三维激光技术的路面坑槽检测误差补偿算法研究[J].公路交通科技,2023,40(3):17-24.ZHOU Yishu,ZHANG Jinning,CAO Jinjin,et al.Study on error compensation algorithm for pavement pothole detection based on3D laser technology[J].Journal of Highway and Transportation Research and Development,2023,40(3):17-24.
[13]陆旻丰,吴杭彬,刘春,等.地面三维激光扫描数据缺失分类及成因分析[J].遥感信息,2013,28(06):82-86.LU Minfeng,WU Hangbin,LIU Chun,et al.Classification and cause analysis of terrestrial 3D laser scanning missing data[J].Remote Sensing Information,2013,28(06):82-86.
[14]高志国.地面三维激光扫描数据处理及建模研究[D].西安:长安大学,2010.GAO Zhiguo.Research of terrestrial 3D laser scanning data processing and modeling[D].Xi’an:Chang‘an University,2010.
[15]杨育坤.激光测距原理的带式输送机监控系统中煤流量检测的研究[D].天津天津工业大学,2019.YANG Yukun.Study on coal flow detection in belt conveyor monitoring system based on laser ranging principle[D].Tianjin Polytechnic University,2019.
[16]Bolkas D,Martinez A.Effect of target color and scanning geometry on terrestrial Li DAR point-cloud noise and plane fitting[J].Journal of Applied Geodesy,2018,12(1):109-127.
[17]杨玉泽.基于地基激光的树木点云数据处理及三维建模[D].哈尔滨东北林业大学,2020.YANG Yuze.Tree point cloud data processing and 3D modeling based on terrestrial Li DAR[D].Northeast Forestry University,2020.
[18]张亚平,郑丰,张晓宇,等.基于热分析技术的烟丝掺配均匀度测定方法[J].烟草科技,2019,52(7):83-88.ZHANG Yaping,ZHENG Feng,ZHANG Xiaoyu,et al.Determination of cut tobacco blending uniformity based on thermogravimetric analysis[J].Tobacco Science&Technology,2019,52(7):83-88.
[19]祁林,乔俊峰,唐习书,等.卷烟制丝过程物料质量稳定性评价[J].轻工学报,2022,37(5):85-90.QI Lin,QIAO Junfeng,TANG Xishu,et al.Evaluation of material uniformity in cigarette spinning process[J].Journal of Light Industry,2022,37(5):85-90.
[20]Kai Z,Youchun X,Rendong W.A preprocessing method of 3Dpoint clouds registration in urban environments[J].Opto-Electronic Engineering,2018,45(12):180266-180269.
[21]Han X F,Jin J S,Wang M J,et al.A review of algorithms for filtering the 3D point cloud[J].Signal Processing:Image Communication,2017,57:103-112.
基本信息:
DOI:10.16472/j.chinatobacco.2022.T0300
中图分类号:TN958.98;TS452
引用信息:
[1]孙名豫,周沅桢,乔俊峰等.基于TOF激光雷达扫描的烟丝堆积体积测量研究[J].中国烟草学报,2025,31(03):39-47.DOI:10.16472/j.chinatobacco.2022.T0300.
基金信息:
云南省兴滇英才支持计划“产业创新人才”专项(YNWR-CYJS-2020-041); 红云红河烟草(集团)有限责任公司科技计划项目“在线无人质检方向的质量过程控制应用研究”(HYHH2018GY04)